如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角

如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D′C... 如图,把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm,把三角板DCE绕点C顺时针旋转15°得到△D′CE′,如图乙.这时AB与CD′相交于点O,D′E′与AB相交于点F,连接AD′.(1)求∠OFE′的度数;(2)求线段AD′的长;(3)判断线段OF、E′F是否相等?若相等,请你加以证明;若不相等,说明你的理由. 展开
 我来答
BBB371
推荐于2016-04-30 · 超过60用户采纳过TA的回答
知道答主
回答量:108
采纳率:50%
帮助的人:107万
展开全部
(1)如图,由题意可知∠3=15°,∠E′=90°,
∵∠1=∠2,
∴∠1=75°.                              
又∵∠B=45°,
∴∠OFE′=∠B+∠1=45°+75°=120°.  
     
(2)连接AD′.
∠OFE′=120°,∴∠D′FO=60°.
又∠CD′E′=30°,∴∠4=90°.              
AC=BC,AB=6cm,
∴OA=OB=3cm,
∠ACB=90°,
∴CO=
1
2
AB=
1
2
×6=3(cm).
又∵CD′=7cm,
∴OD′=CD′-OC=7-3=4(cm).
在Rt△AD′O中,AD′=
OA2+OD2
=
32+42
=5(cm). 

(3)OF≠E′F.
连接CF.
∵∠COF=90°,∠E′=90°,
在Rt△COF中,OF2=CF2-CO2
在Rt△CE′F中,E′F2=CF2-CE′2
∵CO=
1
2
AB=3cm,CE′=
1
2
CD′=
7
2
cm,
∴OF≠E′F.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式