设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,则a2+b2的最小值是( 

设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,则a2+b2的最小值是()A.1B.2C.10D.1100... 设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,则a2+b2的最小值是(  )A.1B.2C.10D.1100 展开
 我来答
手机用户84992
推荐于2016-11-22 · 超过50用户采纳过TA的回答
知道答主
回答量:110
采纳率:0%
帮助的人:97.9万
展开全部
把等式看成关于a,b的直线方程:(x2-1)a+2xb+x-2=0,
由于直线上一点(a,b)到原点的距离大于等于原点到直线的距离,
a2+b2
|x?2|
(x2?1)2+(2x)2

∴a2+b2(
x?2
1+x2
)
2
=
1
(x?2+
5
x?2
+4)
2
1
100

因为x-2+
5
x?2
在x∈[3,4]是减函数,上述式子在x=3,a=-
2
25
,b=-
3
50
时取等号,
故a2+b2的最小值为
1
100
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式