2个回答
展开全部
对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。
隐函数导数的求解一般可以采用以下方法:
先把隐函数转化成显函数,再利用显函数求导的方法求导;隐函数左右两边对x求导(但要注意把y看作x的函数); 利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值; 把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'yF'x分别表示y和x对z的偏导数)来求解。
隐函数导数的求解一般可以采用以下方法:
先把隐函数转化成显函数,再利用显函数求导的方法求导;隐函数左右两边对x求导(但要注意把y看作x的函数); 利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值; 把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'yF'x分别表示y和x对z的偏导数)来求解。
追问
后面一节n元隐函数那里看不懂(不用管这个了)。,隐函数两边对x求导时,假如遇到y的话,是也对y求导并且后面加上dy/dx吗??比如x+y=xy,隐函数求导是x+dy/dx=y+x*dy/dx吗??
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |