(2014?沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC于
(2014?沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC于点C,点A的坐标为(2,23),AB=43,∠B=60°...
(2014?沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC于点C,点A的坐标为(2,23),AB=43,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.(1)求证:△AOD是等边三角形;(2)求点B的坐标;(3)平行于AD的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形OABC截得的线段长为m,直线l与x轴交点的横坐标为t.①当直线l与x轴的交点在线段CD上(交点不与点C,D重合)时,请直接写出m与t的函数关系式(不必写出自变量t的取值范围)②若m=2,请直接写出此时直线l与x轴的交点坐标.
展开
1个回答
展开全部
(1)如图2,证明:过点A作AM⊥x轴于点M,
∵点A的坐标为(2,2
),
∴OM=2,AM=2
∴在Rt△AOM中,tan∠AOM=
=
=
∴∠AOM=60°
由勾股定理得,OA=
=
=4
∵OD=4,
∴OA=OD,
∴△AOD是等边三角形.
(2)如图2,解:过点A作AN⊥BC于点N,
∵BC⊥OC,AM⊥x轴,
∴∠BCM=∠CMA=∠ANC=90°
∴四边形ANCM为矩形,
∴AN=MC,AM=NC,
∵∠B=60°,AB=4
∵点A的坐标为(2,2
3 |
∴OM=2,AM=2
3 |
∴在Rt△AOM中,tan∠AOM=
AM |
OM |
2
| ||
2 |
3 |
∴∠AOM=60°
由勾股定理得,OA=
OM2+AM2 |
22+(2
|
∵OD=4,
∴OA=OD,
∴△AOD是等边三角形.
(2)如图2,解:过点A作AN⊥BC于点N,
∵BC⊥OC,AM⊥x轴,
∴∠BCM=∠CMA=∠ANC=90°
∴四边形ANCM为矩形,
∴AN=MC,AM=NC,
∵∠B=60°,AB=4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|