给定函数①y=x12,②y=log12(x+1),③y=|x2-2x|,④y=x+1x,其中在区间(0,1)上单调递减的函数序号是

给定函数①y=x12,②y=log12(x+1),③y=|x2-2x|,④y=x+1x,其中在区间(0,1)上单调递减的函数序号是()A.①③B.②③C.②④D.①④... 给定函数①y=x12,②y=log12(x+1),③y=|x2-2x|,④y=x+1x,其中在区间(0,1)上单调递减的函数序号是(  )A.①③B.②③C.②④D.①④ 展开
 我来答
手机用户96598
推荐于2016-03-17 · TA获得超过176个赞
知道答主
回答量:111
采纳率:100%
帮助的人:115万
展开全部
①∵y=x
1
2
为[0,+∞)的增函数,可排除;
②∵y=x+1(x>-1)为增函数,y=log
1
2
x
为减函数,根据复合函数的单调性(同增异减)可知②正确;
③y=|x2-2x|,在[0,1],[2,+∞)单调递增,在(-∞,0],[1,2]单调递减,可知③错误;
④由 y=x+
1
x
,在(0,1]单调递减,[1,+∞)单调递增,可知④正确.
故选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式