在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和... 在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).(1)求此二次函数的表达式;(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围. 展开
 我来答
嬽蛚
2014-12-31 · TA获得超过120个赞
知道答主
回答量:162
采纳率:100%
帮助的人:63.5万
展开全部
解答:解:(1)∵二次函数图象顶点的横坐标为1,且过点(2,3)和(-3,-12),
∴由
-
b
2a
=1
4a+2b+c=3
9a-3b+c=-12

解得
a=-1
b=2
c=3

∴此二次函数的表达式为y=-x2+2x+3.

(2)假设存在直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),使得以B,O,D为顶点的三角形与△BAC相似.
在y=-x2+2x+3中,令y=0,则由-x2+2x+3=0,
解得x1=-1,x2=3.
∴A(-1,0),B(3,0).
令x=0,得y=3.
∴C(0,3).
设过点O的直线l交BC于点D,过点D作DE⊥x轴于点E.
∵点B的坐标为(3,0),点C的坐标为(0,3),点A的坐标为(-1,0).
∴|AB|=4,|OB|=|OC|=3,∠OBC=45°.
∴|BC|=
32+32
=3
2

要使△BOD∽△BAC或△BDO∽△BAC,
已有∠B=∠B,则只需
|BD|
|BC|
=
|BO|
|BA|
,①或
|BO|
|BC|
=
|BD|
|BA|
②成立.
若是①,则有|BD|=
|BO|?|BC|
|BA|
=
3×3
2
4
=
9
2
4

而∠OBC=45°,
∴|BE|=|DE|.
∴在Rt△BDE中,由勾股定理,
得|BE|2+|DE|2=2|BE|2=|BD|2=(
9
2
4
2
解得|BE|=|DE|=
9
4
(负值舍去).
∴|OE|=|OB|-|BE|=3-
9
4
=
3
4

∴点D的坐标为(
3
4
9
4
).
将点D的坐标代入y=kx(k≠0)中,求得k=3.
∴满足条件的直线l的函数表达式为y=3x.
或求出直线AC的函数表达式为y=3x+3,则与直线AC平行的直线l的函数表达式为y=3x.
此时易知△BOD∽△BAC,再求出直线BC的函数表达式为y=-x+3.联立y=3x,y=-x+3求得点D的坐标为(
3
4
9
4
).
若是②,则有|BD|=
|BO|?|BA|
|BC|
=
3×4
3
2
=2
2

而∠OBC=45°,
∴|BE|=|DE|.
∴在Rt△BDE中,由勾股定理,
得|BE|2+|DE|2=2|BE|2=|BD|2=(2
2
2
解得|BE|=|DE|=2(负值舍去).
∴|OE|=|OB|-|BE|=3-2=1.
∴点D的坐标为(1,2).
将点D的坐标代入y=kx(k≠0)中,求得k=2.
∴满足条件的直线l的函数表达式为y=2x.
∴存在直线l:y=3x或y=2x与线段BC交于点D(不与点B,C重合),
使得以B,O,D为顶点的三角形与△BAC相似,且点D的坐标分别为(
3
4
9
4
)或(1,2).

(3)设过点C(0,3),E(1,0)的直线y=kx+3(k≠0)与该二次函数的图象交于点P.
将点E(1,0)的坐标代入y=kx+3中,
求得k=-3.
∴此直线的函数表达式为y=-3x+3.
设点P的坐标为(x,-3x+3),
并代入y=-x2+2x+3,得x2-5x=0.
解得x1=5,x2=0(不合题意,舍去).
∴x=5,y=-12.
∴点P的坐标为(5,-12).
此时,锐角∠PCO=∠ACO.
又∵二次函数的对称轴为x=1,
∴点C关于对称轴对称的点C'的坐标为(2,3).
∴当xp>5时,锐角∠PCO<∠ACO;
当xp=5时,锐角∠PCO=∠ACO;
当2<xp<5时,锐角∠PCO>∠ACO.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式