已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.(1)若函数f(x)与g(x)的图象的一个公共点恰好

已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.(1)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;(2)若p和q是方程f(x)... 已知函数f(x)=ax2+ax和g(x)=x-a.其中a∈R且a≠0.(1)若函数f(x)与g(x)的图象的一个公共点恰好在x轴上,求a的值;(2)若p和q是方程f(x)-g(x)=0的两根,且满足0<p<q<1a,证明:当x∈(0,p)时,g(x)<f(x)<p-a. 展开
 我来答
草仓0232
推荐于2016-03-30 · TA获得超过402个赞
知道答主
回答量:126
采纳率:0%
帮助的人:129万
展开全部
(1)设函数g(x)图象与x轴的交点坐标为(a,0),(2分)
∵点(a,0)也在函数f(x)的图象上,∴a3+a2=0.(4分)
而a≠0,∴a=-1. (6分)
(2)由题意可知f(x)-g(x)=a(x-p)(x-q).(8分)
当x∈(0,p)时,∵0<x<p<q<
1
a

∴a(x-p)(x-q)>0,
即当x∈(0,p)时,f(x)-g(x)>0,即f(x)>g(x).(10分)
又f(x)-(p-a)=a(x-p)(x-q)+x-a-(p-a)=(x-p)(ax-aq+1),
当x∈(0,p)时,x-p<0,且ax-aq+1>1-aq>0,
∴f(x)-(p-a)<0,
∴f(x)<p-a,
综上可知,g(x)<f(x)<p-a.(14分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式