(2013?嘉定区二模)如图,点E是正方形ABCD边BC上的一点(不与B、C重合),点F在CD边的延长线上,且满足D
(2013?嘉定区二模)如图,点E是正方形ABCD边BC上的一点(不与B、C重合),点F在CD边的延长线上,且满足DF=BE.联结EF,点M、N分别是EF与AC、AD的交...
(2013?嘉定区二模)如图,点E是正方形ABCD边BC上的一点(不与B、C重合),点F在CD边的延长线上,且满足DF=BE.联结EF,点M、N分别是EF与AC、AD的交点.(1)求∠AFE的度数;(2)求证:CECM=ACFC.
展开
1个回答
展开全部
(1)∵四边形ABCD是正方形,
∴∠B=∠ADC=∠BAD=90°,AB=AD.…(1分)
在△ABE和△ADF中,
∴ABE≌△ADF(SAS).…(1分)
∴AE=AF,∠BAE=∠DAF.…(1分)
∴∠EAF=∠EAD+∠DAF=∠EAD+∠BAE=∠BAD=90°.
∵AE=AF,
∴∠AFE=∠AEF.
∴∠AFE=∠AEF=
×90°=45°.
(2)∵四边形ABCD是正方形,
∴∠ACB=∠ACD=45°.
∵△ABE≌△ADF,
∴∠AEB=∠AFD.
∵∠AEB=∠ACB+∠CAE=45°+∠CAE,∠AFD=∠AFE+∠CFM=45°+∠CFM,
∴∠CAE=∠CFM.
又∵∠ACB=∠ACD,
∴△ACE∽△FCM.
∴
=
.
∴∠B=∠ADC=∠BAD=90°,AB=AD.…(1分)
在△ABE和△ADF中,
|
∴ABE≌△ADF(SAS).…(1分)
∴AE=AF,∠BAE=∠DAF.…(1分)
∴∠EAF=∠EAD+∠DAF=∠EAD+∠BAE=∠BAD=90°.
∵AE=AF,
∴∠AFE=∠AEF.
∴∠AFE=∠AEF=
1 |
2 |
(2)∵四边形ABCD是正方形,
∴∠ACB=∠ACD=45°.
∵△ABE≌△ADF,
∴∠AEB=∠AFD.
∵∠AEB=∠ACB+∠CAE=45°+∠CAE,∠AFD=∠AFE+∠CFM=45°+∠CFM,
∴∠CAE=∠CFM.
又∵∠ACB=∠ACD,
∴△ACE∽△FCM.
∴
CE |
CM |
AC |
FC |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询