(2006?东营)如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M
(2006?东营)如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中...
(2006?东营)如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为多少(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.
展开
展开全部
解:(1)过点P作PQ⊥BC于点Q,
有题意可得:PQ∥AB,
∴△CQP∽△CBA,
∴
=
,
∴
=
,
解得:QP=
x,
∴PM=3-
x,
由题意可知,C(0,3),M(x,0),N(4-x,3),
P点坐标为(x,3-
x).
(2)设△NPC的面积为S,在△NPC中,NC=4-x,
NC边上的高为
x,其中,0≤x≤4.
∴S=
(4-x)×
x=
(-x2+4x)
=-
(x-2)2+
.
∴S的最大值为
,此时x=2.
(3)延长MP交CB于Q,则有PQ⊥BC.
①若NP=CP,
∵PQ⊥BC,
∴NQ=CQ=x.
∴3x=4,
∴x=
.
②若CP=CN,则CN=4-x,PQ=
x,CP=
x,4-x=
x,
∴x=
;
③若CN=NP,则CN=4-x.
∵PQ=
x,NQ=4-2x,
∵在Rt△PNQ中,PN2=NQ2+PQ2,
∴(4-x)2=(4-2x)2+(
x)2,
∴x=
.
综上所述,x=
,或x=
,或x=
.
有题意可得:PQ∥AB,
∴△CQP∽△CBA,
∴
QP |
CQ |
AB |
BC |
∴
QP |
x |
3 |
4 |
解得:QP=
3 |
4 |
∴PM=3-
3 |
4 |
由题意可知,C(0,3),M(x,0),N(4-x,3),
P点坐标为(x,3-
3 |
4 |
(2)设△NPC的面积为S,在△NPC中,NC=4-x,
NC边上的高为
3 |
4 |
∴S=
1 |
2 |
3 |
4 |
3 |
8 |
=-
3 |
8 |
3 |
2 |
∴S的最大值为
3 |
2 |
(3)延长MP交CB于Q,则有PQ⊥BC.
①若NP=CP,
∵PQ⊥BC,
∴NQ=CQ=x.
∴3x=4,
∴x=
4 |
3 |
②若CP=CN,则CN=4-x,PQ=
3 |
4 |
5 |
4 |
5 |
4 |
∴x=
16 |
9 |
③若CN=NP,则CN=4-x.
∵PQ=
3 |
4 |
∵在Rt△PNQ中,PN2=NQ2+PQ2,
∴(4-x)2=(4-2x)2+(
3 |
4 |
∴x=
128 |
57 |
综上所述,x=
4 |
3 |
16 |
9 |
128 |
57 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询