(2010?肇庆)如图所示,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.(1)求证:△CE
(2010?肇庆)如图所示,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.(1)求证:△CEB≌△ADC;(2)若AD=9cm,D...
(2010?肇庆)如图所示,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.(1)求证:△CEB≌△ADC;(2)若AD=9cm,DE=6cm,求BE及EF的长.
展开
1个回答
展开全部
(1)证明:∵BE⊥CE于E,AD⊥CE于D,∠ACB=90°,
∴∠E=∠ADC=90°,∠BCE=90°-∠ACD,∠CAD=90°-∠ACD,
∴∠BCE=∠CAD(3分)
在△BCE与△CAD中,
∠E=∠ADC,∠BCE=∠CAD,BC=AC
∴△CEB≌△ADC(AAS)(4分)
(2)解:∵△CEB≌△ADC,
∴BE=DC,CE=AD,
又∵AD=9
∴CE=AD=9,DC=CE-DE=9-6=3,
∴BE=DC=3(cm),
∵∠E=∠ADF=90°,∠BFE=∠AFD,
∴△BFE∽△AFD,
∴
=
,即有
=
(7分)
解得:EF=
(cm).
∴BE=3cm,EF=
cm.
∴∠E=∠ADC=90°,∠BCE=90°-∠ACD,∠CAD=90°-∠ACD,
∴∠BCE=∠CAD(3分)
在△BCE与△CAD中,
∠E=∠ADC,∠BCE=∠CAD,BC=AC
∴△CEB≌△ADC(AAS)(4分)
(2)解:∵△CEB≌△ADC,
∴BE=DC,CE=AD,
又∵AD=9
∴CE=AD=9,DC=CE-DE=9-6=3,
∴BE=DC=3(cm),
∵∠E=∠ADF=90°,∠BFE=∠AFD,
∴△BFE∽△AFD,
∴
EF |
FD |
BE |
AD |
EF |
6?EF |
3 |
9 |
解得:EF=
3 |
2 |
∴BE=3cm,EF=
3 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询