已知数列{an}的前n项和为Sn,4Sn=an2+2an-3,若a1,a2,a3成等比数列,且n≥3时,an>0(1)求证:当n≥3
已知数列{an}的前n项和为Sn,4Sn=an2+2an-3,若a1,a2,a3成等比数列,且n≥3时,an>0(1)求证:当n≥3时,{an}成等差数列;(2)求{an...
已知数列{an}的前n项和为Sn,4Sn=an2+2an-3,若a1,a2,a3成等比数列,且n≥3时,an>0(1)求证:当n≥3时,{an}成等差数列;(2)求{an}的前n项和Sn.
展开
1个回答
展开全部
解答:(1)证明:∵4Sn=an2+2an-3,4Sn+1=an+12+2an+1-3,
两式相减整理可得(an+1+an)(an+1-an-2)=0,
∵n≥3时,an>0,
∴an+1-an-2=0,
∴an+1-an=2,
∴n≥3时,{an}成等差数列;
(2)解:∵4S1=a12+2a1-3,
∴a1=3或a1=-1,
∵a1,a2,a3成等比数列,
∴an+1+an=0,
∴q=-1,
∵a3>0,
∴a1=3,
∴an=
,
∴Sn=
.
两式相减整理可得(an+1+an)(an+1-an-2)=0,
∵n≥3时,an>0,
∴an+1-an-2=0,
∴an+1-an=2,
∴n≥3时,{an}成等差数列;
(2)解:∵4S1=a12+2a1-3,
∴a1=3或a1=-1,
∵a1,a2,a3成等比数列,
∴an+1+an=0,
∴q=-1,
∵a3>0,
∴a1=3,
∴an=
|
∴Sn=
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询