初三的一道数学题

某商店购进一批单价为20元的日用商品.如果以单价30元销售,那么半月内可售出400件。根据销售经验,提高销售单价会导致销售量的减小,即销售单价每提高1元,销售量相应减少2... 某商店购进一批单价为20元的日用商品.如果以单价30元销售,那么半月内可售出400件。根据销售经验,提高销售单价会导致销售量的减小,即销售单价每提高1元,销售量相应减少20件。如何提高售价,才能在半月内获得最大利润? 展开
邹昕
2012-10-23 · TA获得超过1238个赞
知道小有建树答主
回答量:394
采纳率:83%
帮助的人:108万
展开全部
设:提高单价n元
则,这时候销售量为(400-20n),商店购进单价为20*(400-20n),商店售出单价为(30+n)
∴此时的利润为
(30+n)*(400-20n)-20*(400-20n)
=[(30+n)-20]*(400-20n)
=(10+n)*(400-20n)
=-20(n平方-10n-200)
又∵要在,即求-20(n平方-10n-200)的最大值
∴令-20(n平方-10n-200)=0,求该一元二次方程图象的顶点,则当n取-[200/2*(-20)]时,该方程取得最大值
∴n=5
故,当销售单价提高到30+5=35元时,能在半月内获得最大利润

考点:二次函数的应用.专题:销售问题.分析:总利润=每件日用品的利润×可卖出的件数,利用公式法可得二次函数的最值,减去原价即为提高的售价.解答:解:设销售单价为x元,销售利润为y元.
根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000,
当x=-14002×(-20)=35时,y最大=4500,
这时,x-30=35-30=5.
所以,销售单价提高5元,才能在半月内获得最大利润4500元.点评:考查二次函数的应用;得到半月内可卖出日用品的件数是解决本题的难点.
dongsiyizu
2012-10-23
知道答主
回答量:35
采纳率:0%
帮助的人:20.8万
展开全部
一元二次方程极值问题。设销售价格提高了X元,利润为Y元。原式可为:(30-20+X)(400-20X)=Y 然后求解就可以了。注意算出来的X是提高的价格还要加上原价格。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
shiziyan111
2012-10-23 · TA获得超过1万个赞
知道小有建树答主
回答量:1158
采纳率:50%
帮助的人:422万
展开全部
解:设销售单价为x元,销售利润为y元.
根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000
当x=35时,y最大=4×(-20)×(-20000)-14002 /4×(-20)=4500
这时,x-30=35-30=5.
所以,销售单价提高5元,才能在半月内获得最大利润4500元.
祝你学习愉快
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Zenith
2012-10-23
知道答主
回答量:2
采纳率:0%
帮助的人:2827
展开全部
解:设提价x元,利润为y
y=(400-20x)(30-20+x)
=-20x²+200x+4000
=-(x-5)²+3500

答:涨5元获最大利润
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
苍可彤韵
2019-01-30 · TA获得超过3898个赞
知道大有可为答主
回答量:3163
采纳率:29%
帮助的人:425万
展开全部
解:(1)
由已知:OC=0.6,AC=0.6,
得点A的坐标为(0.6,0.6),
代入y=ax2,得a=5/3

∴抛物线的解析式为y=5/3x2
不懂的欢迎追问,如有帮助请采纳,谢谢!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式