已知函数f(x)=根号x,g(x)=alnx(a属于R) 急求!!
1,若曲线y=fx与曲线y=gx相交,且在交点处有相同切线,求a的值及该切线的方程2,设函数hx=fx-gx,hx存在最小值时,求最小值解析式...
1,若曲线y=fx与曲线y=gx相交,且在交点处有相同切线,求a的值及该切线的方程
2,设函数hx=fx-gx,hx存在最小值时,求最小值解析式 展开
2,设函数hx=fx-gx,hx存在最小值时,求最小值解析式 展开
1个回答
展开全部
1,f'(x)=(1/2)x^(-1/2), g'(x)=a/x
在交点处有以下两个式子
根号x=alnx, (1)
(1/2)x^(-1/2)=a/x (2)
解得a=e/2,此时x=e^2
或a=-e/2,此时x=e^2,不符合第二个式子,舍去
所以a=e/2,此时x=e^2
切线过点(e^2,e),斜率为1/(2e)
切线的方程为y-e=1/(2e)(x-e^2) 即y=1/(2e)x+(1/2)e
2,求函数h(x)=f(x)-g(x)的导数
h’(x)=f‘(x)-g’(x)=(1/2)x^(-1/2)-a/x
由(1/2)x^(-1/2)-a/x=0得
x=4a^2
若h(x)存在最小值,则最小值是h(4a^2)=根号(4a^2)-aln(4a^2)
希望对你有帮助。
在交点处有以下两个式子
根号x=alnx, (1)
(1/2)x^(-1/2)=a/x (2)
解得a=e/2,此时x=e^2
或a=-e/2,此时x=e^2,不符合第二个式子,舍去
所以a=e/2,此时x=e^2
切线过点(e^2,e),斜率为1/(2e)
切线的方程为y-e=1/(2e)(x-e^2) 即y=1/(2e)x+(1/2)e
2,求函数h(x)=f(x)-g(x)的导数
h’(x)=f‘(x)-g’(x)=(1/2)x^(-1/2)-a/x
由(1/2)x^(-1/2)-a/x=0得
x=4a^2
若h(x)存在最小值,则最小值是h(4a^2)=根号(4a^2)-aln(4a^2)
希望对你有帮助。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |