设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|<=M(x∈[[0,1],证明一切x∈[0,1],|f'(x)<=(M/2
设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|<=M(x∈[[0,1],证明一切x∈[0,1],|f'(x)<=(M/2)...
设f(x)在[0,1]上有二阶连续导数,且满足f(1)=f(0)及|f''(x)|<=M(x∈[[0,1],证明一切x∈[0,1],|f'(x)<=(M/2)
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |