牛顿迭代法的收敛条件是什么?
展开全部
一、收敛条件:
1、全局收敛性是指初值在定义域内任取时算法是否收敛,若收敛其速度如何,收敛到哪个根.具体来说。
2、局部收敛性有如下定理
设已知 f(x) = 0 有根 a,f(x) 充分光滑(各阶导数存在且连续).
若 f'(a) != 0(单重零点),则初值取在 a 的某个邻域内时,迭代法 x[n+1] = x[n] - f(x[n])/f'(x[n]) 得到的序列 x[n] 总收敛到 a,且收敛速度至少是二阶的.
若 f'(a) == 0(多重零点),则初值取在 a 的某个邻域内时,收敛速度是一阶的.
记 g(x)=x-f(x)/f'(x),其中"某个邻域"可由 |g'(x)|
二、牛顿迭代法的简单介绍:
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。
1、全局收敛性是指初值在定义域内任取时算法是否收敛,若收敛其速度如何,收敛到哪个根.具体来说。
2、局部收敛性有如下定理
设已知 f(x) = 0 有根 a,f(x) 充分光滑(各阶导数存在且连续).
若 f'(a) != 0(单重零点),则初值取在 a 的某个邻域内时,迭代法 x[n+1] = x[n] - f(x[n])/f'(x[n]) 得到的序列 x[n] 总收敛到 a,且收敛速度至少是二阶的.
若 f'(a) == 0(多重零点),则初值取在 a 的某个邻域内时,收敛速度是一阶的.
记 g(x)=x-f(x)/f'(x),其中"某个邻域"可由 |g'(x)|
二、牛顿迭代法的简单介绍:
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询