利用矩阵的初等变换,求方阵的逆阵(3 -2 0 -1 0 2 2 1 1 -2 -3 -2 0 1 2 1)
展开全部
(A,E) =
3 -2 0 -1 1 0 0 0
0 2 2 1 0 1 0 0
1 -2 -3 -2 0 0 1 0
0 1 2 1 0 0 0 1
r1-3r3
0 4 9 5 1 0 -3 0
0 2 2 1 0 1 0 0
1 -2 -3 -2 0 0 1 0
0 1 2 1 0 0 0 1
r1-4r4,r2-2r4,r3+2r4
0 0 1 1 1 0 -3 -4
0 0 -2 -1 0 1 0 -2
1 0 1 0 0 0 1 2
0 1 2 1 0 0 0 1
r2+2r1,r3-r1,r4-2r1
0 0 1 1 1 0 -3 -4
0 0 0 1 2 1 -6 -10
1 0 0 -1 -1 0 4 6
0 1 0 -1 -2 0 6 9
r1-r2,r3+r2,r4+r2
0 0 1 0 -1 -1 3 6
0 0 0 1 2 1 -6 -10
1 0 0 0 1 1 -2 -4
0 1 0 0 0 1 0 -1
交换行
1 0 0 0 1 1 -2 -4
0 1 0 0 0 1 0 -1
0 0 1 0 -1 -1 3 6
0 0 0 1 2 1 -6 -10
得 A^-1 =
1 1 -2 -4
0 1 0 -1
-1 -1 3 6 2 1 -6 -10
3 -2 0 -1 1 0 0 0
0 2 2 1 0 1 0 0
1 -2 -3 -2 0 0 1 0
0 1 2 1 0 0 0 1
r1-3r3
0 4 9 5 1 0 -3 0
0 2 2 1 0 1 0 0
1 -2 -3 -2 0 0 1 0
0 1 2 1 0 0 0 1
r1-4r4,r2-2r4,r3+2r4
0 0 1 1 1 0 -3 -4
0 0 -2 -1 0 1 0 -2
1 0 1 0 0 0 1 2
0 1 2 1 0 0 0 1
r2+2r1,r3-r1,r4-2r1
0 0 1 1 1 0 -3 -4
0 0 0 1 2 1 -6 -10
1 0 0 -1 -1 0 4 6
0 1 0 -1 -2 0 6 9
r1-r2,r3+r2,r4+r2
0 0 1 0 -1 -1 3 6
0 0 0 1 2 1 -6 -10
1 0 0 0 1 1 -2 -4
0 1 0 0 0 1 0 -1
交换行
1 0 0 0 1 1 -2 -4
0 1 0 0 0 1 0 -1
0 0 1 0 -1 -1 3 6
0 0 0 1 2 1 -6 -10
得 A^-1 =
1 1 -2 -4
0 1 0 -1
-1 -1 3 6 2 1 -6 -10
来自:求助得到的回答
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询