2个回答
展开全部
解:
x的1/2的次方+x的负1/2次方=3
x^(1/2)+x^(-1/2)=3
x^(1/2)+1/[x^(1/2)]=3
令:x^(1/2)=y,代入上式,有:
y+1/y=3
y^2-3y+1=0
解得:y=(3±√5)/2
即:y1=(3+√5)/2、y2=(3-√5)/2
(y1)^2=(7+3√5)/2、(y2)^2=(7-3√5)/2
(y1)^3=9+4√5、(y2)^3=9-4√5
x的负一次方+x+2分之x的3/2次方+x的负3/2次方+3
=x^(-1)+x+[x^(3/2)]/2+x^(-3/2)+3
=1/[x^(1/2)]^2+[x^(1/2)]^2+{[x^(1/2)]^3}/2+1/[x^(1/2)]^3+3
=1/(y^2)+y^2+(y^3)/2+1/(y^3)+3
所求数值有两个结果:
(1)、1/(y^2)+y^2+(y^3)/2+1/(y^3)+3
=1/[(7+3√5)/2]+(7+3√5)/2+(9+4√5)/2+1/(9+4√5)+3
=2/(7+3√5)+(7+3√5)/2+(9+4√5)/2+1/(9+4√5)+3
=2(7-3√5)/4+(7+3√5)/2+(9+4√5)/2+(9-4√5)+3
=7/2-(3/2)√5+7/2+(3/2)√5+9/2+2√5+9-4√5+3
=47/2-2√5
另一个,大同小异,只需把(y2)^2、(y2)^3代入即可。
就留给楼主做练习吧。
x的1/2的次方+x的负1/2次方=3
x^(1/2)+x^(-1/2)=3
x^(1/2)+1/[x^(1/2)]=3
令:x^(1/2)=y,代入上式,有:
y+1/y=3
y^2-3y+1=0
解得:y=(3±√5)/2
即:y1=(3+√5)/2、y2=(3-√5)/2
(y1)^2=(7+3√5)/2、(y2)^2=(7-3√5)/2
(y1)^3=9+4√5、(y2)^3=9-4√5
x的负一次方+x+2分之x的3/2次方+x的负3/2次方+3
=x^(-1)+x+[x^(3/2)]/2+x^(-3/2)+3
=1/[x^(1/2)]^2+[x^(1/2)]^2+{[x^(1/2)]^3}/2+1/[x^(1/2)]^3+3
=1/(y^2)+y^2+(y^3)/2+1/(y^3)+3
所求数值有两个结果:
(1)、1/(y^2)+y^2+(y^3)/2+1/(y^3)+3
=1/[(7+3√5)/2]+(7+3√5)/2+(9+4√5)/2+1/(9+4√5)+3
=2/(7+3√5)+(7+3√5)/2+(9+4√5)/2+1/(9+4√5)+3
=2(7-3√5)/4+(7+3√5)/2+(9+4√5)/2+(9-4√5)+3
=7/2-(3/2)√5+7/2+(3/2)√5+9/2+2√5+9-4√5+3
=47/2-2√5
另一个,大同小异,只需把(y2)^2、(y2)^3代入即可。
就留给楼主做练习吧。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询