求极限lim(x→无穷)1/n{(1+cosπ/n)^(1/2)+....+(1+cosn*π/n)^(1/2)} 要过程...
1个回答
展开全部
lim[n→∞] (1/n)[(1+cos(π/n))^(1/2)+...+(1+cos(nπ/n))^(1/2)]
=lim[n→∞] (1/n)Σ(1+cos(iπ/n))^(1/槐物2) i=1到n
=∫[0→1] [1+cos(πx)]^(1/2) dx
=∫[0→1] [2cos²铅纯液(πx/2)]^(1/2) dx
=√2∫[0→1] cos(πx/2) dx
=(2√2/π)∫[0→1] cos(πx/2) d(πx/2)
=(2√2/π)sin(πx/2) |[0→1]
=2√2/π
希望可以帮到你,不明白可以追问,如果解决了问题,请点裤贺下面的"选为满意回答"按钮,谢谢。
=lim[n→∞] (1/n)Σ(1+cos(iπ/n))^(1/槐物2) i=1到n
=∫[0→1] [1+cos(πx)]^(1/2) dx
=∫[0→1] [2cos²铅纯液(πx/2)]^(1/2) dx
=√2∫[0→1] cos(πx/2) dx
=(2√2/π)∫[0→1] cos(πx/2) d(πx/2)
=(2√2/π)sin(πx/2) |[0→1]
=2√2/π
希望可以帮到你,不明白可以追问,如果解决了问题,请点裤贺下面的"选为满意回答"按钮,谢谢。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |