求此级数的和函数
1个回答
展开全部
解:由于n+1=1/2*(2n+1)+1/2
所以
(-1)^n*(n+1)/(2n+1)!*x^(2n+1)=
(-1)^n*[1/2*(2n+1)+1/2]/(2n+1)!*x^(2n+1)=
(-1)^n*1/2*[x*x^(2n)/(2n)!+x^(2n+1)/(2n+1)!]
原式=1/2*[x+x]-1/2*[x*x^2/2!+x^3/3!]+1/2*[x*x^4/4!+x^5/5!]-1/2*[x*x^6/6!+x^7/7!]+……
=1/2*[x-x*x^2/2!+x*x^4/4!-x*x^6/6!+……]+1/2*[x-x^3/3!+x^5/5!-x^7/7!+……]
=x/2*[1-x^2/2!+x^4/4!-x^6/6!+……]+1/2*[x-x^3/3!+x^5/5!-x^7/7!+……]
=x/2*cosx+1/2*sinx
所以
(-1)^n*(n+1)/(2n+1)!*x^(2n+1)=
(-1)^n*[1/2*(2n+1)+1/2]/(2n+1)!*x^(2n+1)=
(-1)^n*1/2*[x*x^(2n)/(2n)!+x^(2n+1)/(2n+1)!]
原式=1/2*[x+x]-1/2*[x*x^2/2!+x^3/3!]+1/2*[x*x^4/4!+x^5/5!]-1/2*[x*x^6/6!+x^7/7!]+……
=1/2*[x-x*x^2/2!+x*x^4/4!-x*x^6/6!+……]+1/2*[x-x^3/3!+x^5/5!-x^7/7!+……]
=x/2*[1-x^2/2!+x^4/4!-x^6/6!+……]+1/2*[x-x^3/3!+x^5/5!-x^7/7!+……]
=x/2*cosx+1/2*sinx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询