二次方程X^2-2MX+(M-1)=0有且仅有一个正实数根,则实数M的取值范围

道祖I鸿钧
2012-11-03 · TA获得超过297个赞
知道答主
回答量:157
采纳率:0%
帮助的人:154万
展开全部
∵二次方程X^2-2MX+(M-1)=0有且仅有一个正实数根
且△=4M²-4M+4=M²-M+1>0
故其必有2个根
且一正一负
则由伟达定理得
X1X2=c/a=(M-1)/1≤0

X1+X2=-b/a=2M/1
(1)当对称轴x=-b/2a=M≥0时
X1X2=c/a=(M-1)/1≤0

X1+X2=-b/a=2M/1≥0
解得M≤1且M≥0
故M∈[0,1]
(2)当对称轴x=-b/2a=M≤0时
X1X2=c/a=(M-1)/1≤0

X1+X2=-b/a=2M/1≤0
解得M≤0
故可得M∈(-∞,0]
综上所述当M∈ (-∞,1]时二次方程X^2-2MX+(M-1)=0有且仅有一个正实数根
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式