利用曲线积分,求星形线x=acos³t,y=asin³t所围图形面积

利用曲线积分,求星形线x=acos³t,y=asin³t所围图形面积这题目用面积公式∫∫dxdy,和格林公式做,但是怎么推出A=1/2(∫xdy-yd... 利用曲线积分,求星形线x=acos³t,y=asin³t所围图形面积这题目用面积公式∫∫dxdy,和格林公式做,但是怎么推出A=1/2(∫xdy-ydx)的? 展开
 我来答
水果山猕猴桃
高能答主

2019-05-10 · 经不住似水流年,逃不过此间年少
水果山猕猴桃
采纳数:519 获赞数:110507

向TA提问 私信TA
展开全部

面积是(3πa^2)/8。

由对称性,S=4∫(0→a)ydx

=4∫(π/2→0) a(sint)^3 d[a(cost)^3]

=12a^2∫(0→π/2) (sint)^4(cost)^2 dt

=12a^2∫(0→π/2) [(sint)^4-(sint)^6] dt

=12a^2[3/4*1/2*π/2-5/6*3/4*1/2*π/2]

=(3πa^2)/8。

扩展资料:

曲线积分中,被积的函数可以是标量函数或向量函数。积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。带有权重是曲线积分与一般区间上的积分的主要不同点。

物理学中的许多简单的公式,在推广之后都是以曲线积分的形式出现。曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出现的概率。

参考资料来源:百度百科-曲线积分

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
爱媛媛great
2019-05-13 · TA获得超过264个赞
知道答主
回答量:8
采纳率:0%
帮助的人:2221
展开全部

利用曲线积分计算曲线所围成图形的面积 :

星形线x=acos³t,y=asin³t,0≤t≤2:

[r(t)]^2=[x(t)]^2+[y(t)]^2=a^2(cost)^6+a^2(sint)^6

=a^2[(cost)^2+(sint)^2][(cost)^4+(sint)^4-(cost)^2(sint)^2]

=a^2[1-3(cost)^2(sint)^2]

所以面积

S=(1/2)∫[r(t)]^2dt

=(1/2)∫(0->2π) a^2[1-3(cost)^2(sint)^2]dt

=5πa^2/8

扩展资料:

用格林公式求星型线 x=acos³t,y=asin³t的面积.

S=(1/2)∮xdy-ydx=[0,2π](1/2)∫(3a²cos⁴tsin²t+3a²sin⁴tcos²t)dt

=[0,2π](3a²/2)∫(cos²tsin²t(cos²t+sin²t)dt=[0,2π](3a²/2)∫(cos²tsin²t)dt

=[0,2π](3a²/2)∫[(1/4)(1+cos2t)(1-cos2t)dt=[0,2π](3a²/2)∫[(1/4)(1-cos²2t)dt

=[0,2π](3a²/2)[(1/4)∫dt-(1/8)∫(1+cos4t)dt]

=[0,2π](3a²/2)[(1/8)∫dt-(1/32)∫cos4td(4t)]

=(3a²/2)[t/8-(1/32)sin4t][0,2π]=(3/8)πa²

参考资料来源:百度百科-曲线积分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-05-03
展开全部
利用曲线积分,求星形线x=acos³t,y=asin³t所围图形面积
:利用曲线积分计算曲线所围成图形的面积星形线x=acos³t,y=asin³t,0≤t≤2:[r(t)]^2=[x(t)]^2+[y(t)]^2=a^2(cost)^6+a...
追问
什么鬼
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-06-24 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1606万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式