高数求极限问题,来大神!
2个回答
展开全部
用洛必达法则和等价无穷小代换
原式=lim(x->0) [sec^2(tanx)*sec^2x-cos(sinx)*cosx]/(1-cosx)
=lim(x->0) sec^2x*[sec^2(tanx)-cos(sinx)*cos^3x]/(x^2/2)
=lim(x->0) 2[sec^2(tanx)-cos(sinx)*cos^3x]/x^2
=lim(x->0) [2sec^2(tanx)*tan(tanx)*sec^2x+sin(sinx)*cos^4x+3cos(sinx)*cos^2x*sinx]/x
=lim(x->0) [2tan(tanx)+sin(sinx)+3sinx]/x
=lim(x->0) [2sec^2(tanx)*sec^2x+cos(sinx)*cosx+3cosx]
=2+1+3
=6
原式=lim(x->0) [sec^2(tanx)*sec^2x-cos(sinx)*cosx]/(1-cosx)
=lim(x->0) sec^2x*[sec^2(tanx)-cos(sinx)*cos^3x]/(x^2/2)
=lim(x->0) 2[sec^2(tanx)-cos(sinx)*cos^3x]/x^2
=lim(x->0) [2sec^2(tanx)*tan(tanx)*sec^2x+sin(sinx)*cos^4x+3cos(sinx)*cos^2x*sinx]/x
=lim(x->0) [2tan(tanx)+sin(sinx)+3sinx]/x
=lim(x->0) [2sec^2(tanx)*sec^2x+cos(sinx)*cosx+3cosx]
=2+1+3
=6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询