用含x的代数式表示ac+ce的长;当x的值为多少时,ac+ce的值最小
1个回答
2017-10-23
展开全部
1:
AC=√((8-x)²+25)
CE=√x²+1
所以AC+CE=√((8-x)²+25)+√x²+1
2:
在三角形ACE里
AC+CE>AE
所以当C与O重合时,AE最短
做BF=DE=1
所以AF=6,
因为BD=8
所以AE=√BD²+√(AB²+BE²)
=√BD²+√(AB+BE)²
=√8²+√(5+1)²
=10
所以AC+CE最小是10
AC=√((8-x)²+25)
CE=√x²+1
所以AC+CE=√((8-x)²+25)+√x²+1
2:
在三角形ACE里
AC+CE>AE
所以当C与O重合时,AE最短
做BF=DE=1
所以AF=6,
因为BD=8
所以AE=√BD²+√(AB²+BE²)
=√BD²+√(AB+BE)²
=√8²+√(5+1)²
=10
所以AC+CE最小是10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询