展开全部
令x=pcosθ,y=psinθ
x²-2x+y²=0
p²=2pcosθ
p=2cosθ
上半圆为:
{0<=p<=2cosθ
{0<=θ<=π/2
原式=2∫∫p²pdpdθ
=2∫(0,π/2)dθ∫(0,2cosθ)p³dp
=2∫(0,π/2)1/4p^4|(0,2cosθ)dθ
=1/2∫(0,π/2)16cos^4θdθ
=8∫(0,π/2)cos^4θdθ
=8×3/4×1/2×π/2
=(3/2)π
x²-2x+y²=0
p²=2pcosθ
p=2cosθ
上半圆为:
{0<=p<=2cosθ
{0<=θ<=π/2
原式=2∫∫p²pdpdθ
=2∫(0,π/2)dθ∫(0,2cosθ)p³dp
=2∫(0,π/2)1/4p^4|(0,2cosθ)dθ
=1/2∫(0,π/2)16cos^4θdθ
=8∫(0,π/2)cos^4θdθ
=8×3/4×1/2×π/2
=(3/2)π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询