关于实数的计算,怎么算,还有实数的问题怎么做

265380s
2012-11-08 · TA获得超过4907个赞
知道小有建树答主
回答量:1220
采纳率:80%
帮助的人:269万
展开全部
四则运算封闭性  实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
实数集有序性
  实数集是有序的,即任意两个实数a、b必定满足下列三个关系之一:a<b,a=b,a>b.
实数的传递性
  实数大小具有传递性,即若a>b,b>c,则有a>c.
实数的阿基米德性
  实数具有阿基米德(Archimedes)性,即对任何a,b ∈R,若b>a>0,则存在正整数n,使得na>b.
实数的稠密性
  实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数.
实数唯一性
  如果在一条直线(通常为水平直线)上确定O作为原点,指定一个方向为正方向(通常把指向右的方向规定为正方向),并规定一个单位长度,则称此直线为数轴。任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集R与数轴上的点有着一一对应的关系。
  完备性
  作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:
  所有实数的柯西序列都有一个实数极限。
  有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限 √2。实数是有理数的完备化——这亦是构造实数集合的一种方法。
  极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。
“完备的有序域”
  实数集合通常被描述为“完备的有序域”,这可以几种解释。
  首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 z,z + 1 将更大)。所以,这里的“完备”不是完备格的意思。
  另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。
  这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。
  “完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。
高级性质
  实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为 2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的公理不相关。
  所有非负实数的平方根属于 R,但这对负数不成立。这表明 R 上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于 R。这两个性质使 R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。
  实数集拥有一个规范的测度,即勒贝格测度。
  实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于 R,但也同样满足和 R 一样的一阶逻辑命题。满足和 R 一样的一阶逻辑命题的有序域称为 R 的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在 R 中证明要简单一些),从而确定这些命题在 R 中也成立。
拓扑性质
  实数集构成一个度量空间:x 和 y 间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是 1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:
  令 a 为一实数。a 的邻域是实数集中一个包括一段含有 a 的线段的子集。
  R 是可分空间。
  Q 在 R 中处处稠密。
  R的开集是开区间的联集。
  R的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。
  每个R中的有界序列都有收敛子序列。
  R是连通且单连通的。
  R中的连通子集是线段、射线与R本身。由此性质可迅速导出中间值定理。
编辑本段扩展与一般化
  实数集可以在几种不同的方面进行扩展和一般化:
  最自然的扩展可能就是复数了。复数集包含了所有多项式的根。但是,复数集不是一个有序域。
  实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。
  有时候,形式元素 +∞ 和 -∞ 加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。
  希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式