指数函数和对数函数的导数的推导
2个回答
展开全部
lim(h->0)[e^(x+h)-e^x]/h
=lim(h->0)e^x[e^(h)-1]/h
=lim(h->0)e^x*h/h
=e^x
如果是a^x
a^x=e^xlna,同理可证;
lim(h->0)[log(a,x+h)-log(a,x)]/h
=lim(h->0)[log(a,1+h/x)]/h
=lim(h->0)[log(a,(1+h/x)^(1/h))]
=[log(a,e^(1/x))]
=1/x*log(a,e)
=1/(xlna)
=lim(h->0)e^x[e^(h)-1]/h
=lim(h->0)e^x*h/h
=e^x
如果是a^x
a^x=e^xlna,同理可证;
lim(h->0)[log(a,x+h)-log(a,x)]/h
=lim(h->0)[log(a,1+h/x)]/h
=lim(h->0)[log(a,(1+h/x)^(1/h))]
=[log(a,e^(1/x))]
=1/x*log(a,e)
=1/(xlna)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询