高数 求证 10
3个回答
展开全部
x∈(0,π/2)
1/2 <1 -(1/2)(sinx)^2 <1
1/√2<√[1 -(1/2)(sinx)^2] <1
1<1/√[1 -(1/2)(sinx)^2] <√2
∫(0->π/2) dx <∫(0->π/2) dx/√[1 -(1/2)(sinx)^2] < ∫(0->π/2) √2 dx
π/2 <∫(0->π/2) dx/√[1 -(1/2)(sinx)^2] < π/√2
1/2 <1 -(1/2)(sinx)^2 <1
1/√2<√[1 -(1/2)(sinx)^2] <1
1<1/√[1 -(1/2)(sinx)^2] <√2
∫(0->π/2) dx <∫(0->π/2) dx/√[1 -(1/2)(sinx)^2] < ∫(0->π/2) √2 dx
π/2 <∫(0->π/2) dx/√[1 -(1/2)(sinx)^2] < π/√2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询