高等数学,涉及罗尔中值定理的证明题
2个回答
展开全部
罗尔中值定理是:如果 R 上的函数 f(x) 满足以下条件:(1)在闭区间 [a,b] 上连续,(2)在开区间 (a,b) 内可导,(3)f(a)=f(b),则至少存在一个 ξ∈(a,b),使得 f'(ξ)=0。
因此,需要根据证明的结论构造出满足条件的函数
令 g'(x)=f'(x)f(1-x)-f(x)f'(1-x),两边积分可以得到
g(x)=f(x)f(1-x),这就是我们需要的函数
g(0)=f(0)f(1)=g(1)
g(x)显然满足[0,1]连续,(0,1)可导
因此,需要根据证明的结论构造出满足条件的函数
令 g'(x)=f'(x)f(1-x)-f(x)f'(1-x),两边积分可以得到
g(x)=f(x)f(1-x),这就是我们需要的函数
g(0)=f(0)f(1)=g(1)
g(x)显然满足[0,1]连续,(0,1)可导
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询