高中必修4.倍角公式!!!详细点的!速度!

匿名用户
2014-01-17
展开全部
倍角公式,是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。
公式分类  现列出公式如下:  sin2α=2sinαcosα  tan2α=2tanα/(1-tan^2(α))  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)  可别轻视这些字符,它们在数学学习中会起到重要作用。包括一些图像问题和函数问题中三倍角公式  sin3α=3sinα-4sin^3(α)  cos3α=4cos^3(α)-3cosα  tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)半角公式  sin^2(α/2)=(1-cosα)/2  cos^2(α/2)=(1+cosα)/2  tan^2(α/2)=(1-cosα)/(1+cosα)  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式  sinα=2tan(α/2)/[1+tan^2(α/2)]  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]  tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]其他  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式  sin4A=-4*(cosA*sinA*(2*sinA^2-1))  cos4A=1+(-8*cosA^2+8*cosA^4)  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式  sin5A=16sinA^5-20sinA^3+5sinA  cos5A=16cosA^5-20cosA^3+5cosA  tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))  cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))  tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))  cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))  tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))  cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)  tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))  cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))  tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))  cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))  tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)N倍角公式  根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)  为方便描述,令sinθ=s,cosθ=c  考虑n为正整数的情形:  cos(nθ)+ i sin(nθ)  = (c+ i s)^n  = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ...  +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ...  =>比较两边的实部与虚部  实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ...  i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ...  对所有的自然数n,  1. cos(nθ):  公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。  2. sin(nθ):  (1)当n是奇数时:  公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。  (2)当n是偶数时:  公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。  (例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)
匿名用户
2014-01-17
展开全部
你是说三角函数吗!sin2R=2sinRcosR(R是个带值)cos2R=cosR平方-sinR平方 =2cosR平方-1 =1-2sinR平方tan2R=2tanR/1-tanR平方
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式