已知抛物线y=-2分之一x²+(5-m)x+m-3的对称轴是y求抛物线顶点的坐标 有过程给好评
展开全部
亲,求采纳~
y= - 0.5x^2+(5-m)x+(m-3) 对称轴:x=0
y= -0.5 [ x^2 - 2(5-m)x ] +(m-3)
y= -0.5 [ x^2 - 2(5-m)x + (5-m)^2 - (5-m)^2 ] + (m-3)
y= -0.5 [ x - (5-m) ]^2 + 0.5(5-m)^2 + (m-3)
y= -0.5 [ x - (5-m) ]^2 + 0.5m^2 - 4m + 9.5
对称轴 x = 5-m = 0 m = 5
顶点坐标(0,0.5m^2 - 4m + 9.5 ) = (0,2)
y= - 0.5x^2+(5-m)x+(m-3) 对称轴:x=0
y= -0.5 [ x^2 - 2(5-m)x ] +(m-3)
y= -0.5 [ x^2 - 2(5-m)x + (5-m)^2 - (5-m)^2 ] + (m-3)
y= -0.5 [ x - (5-m) ]^2 + 0.5(5-m)^2 + (m-3)
y= -0.5 [ x - (5-m) ]^2 + 0.5m^2 - 4m + 9.5
对称轴 x = 5-m = 0 m = 5
顶点坐标(0,0.5m^2 - 4m + 9.5 ) = (0,2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询