在△ABC中,求证:sin²A+sin²B+sin²C=2+2cosAcosBcosC

同上... 同上 展开
百度网友150f185
2014-04-22 · 超过35用户采纳过TA的回答
知道答主
回答量:133
采纳率:0%
帮助的人:72万
展开全部
sina^2+sinb^2+sinc^2-2cosacosbcosc
=3-(cosa^2+cosb^2+cosc^2+2cosacosbcosc)
=3-{cosa*[cosa+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)+2]}
=3-{-cos(b+c)*[-cos(b+c)+2cosb*cosc]+(1/2)*[cos(2b)+cos(2c)]+1}
=3-{-cos(b+c)*cos(b-c)+cos(b+c)*cos(b-c)+1}
=2
追问
第一步就没看懂
追答
sina^2就是sina的平方
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式