在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点,求证:DE//平面ABC
展开全部
解:(1)证明:取BC中点G,连接AG,EG,
因为E是B1C的中点,所以EG∥BB1,
且EG=1/2BB1.
由直棱柱知,AA1∥BB1,AA1=BB1,而D是AA1的中点,
所以EG∥AD,EG=AD
所以四边形EGAD是平行四边形,
所以ED∥AG,又DE⊄平面ABC,AG⊂平面ABC
所以DE∥平面ABC.
(2)解:因为AD∥BB1,所以AD∥平面BCE,
所以VE-BCD=VD-BCE=VA-BCE=VE-ABC,
由(1)知,DE∥平面ABC,
所以VE-ABC=VD-ABC=1/3AD•1/2BC•AG=1/6×3×6×4=12.
因为E是B1C的中点,所以EG∥BB1,
且EG=1/2BB1.
由直棱柱知,AA1∥BB1,AA1=BB1,而D是AA1的中点,
所以EG∥AD,EG=AD
所以四边形EGAD是平行四边形,
所以ED∥AG,又DE⊄平面ABC,AG⊂平面ABC
所以DE∥平面ABC.
(2)解:因为AD∥BB1,所以AD∥平面BCE,
所以VE-BCD=VD-BCE=VA-BCE=VE-ABC,
由(1)知,DE∥平面ABC,
所以VE-ABC=VD-ABC=1/3AD•1/2BC•AG=1/6×3×6×4=12.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询