f(x)+f(y)=f((x+y)/(1+xy))
3个回答
展开全部
解:(1)∵1+xn²≥2│xn│
∴│2xn/(1+xn²│≤1
又x1=1/2
∴
│2xn/(1+xn²│<1
f(x1)=f(1/2)=-1
而f(x(n+1)),f(x(n+1))=f(2xn/(1+xn²²)=f[(xn+xn)/(1+xnxn)=f(xn)+f(xn)=2f(xn)
∴f(x(n+1))/f(xn)=2
∴﹛f(xn)﹜是以-1为首项,以2为公比的等比数列,故f(n)=-2^(n-1)
(2)由题设,有f(0)+f(0)=f[(0+0)/(1+0)]=f(0),故f(0)=0
又x∈(-1,1),有f(x)+f(-x)=f[(x-x)/91-x²]]=f(0)=0
得f(-x)=-f(x),故知f(x)在﹙-1,1)上为奇函数.
由
1/(k²+3k+1)=1/[
(k+1)(k+2)-1]
=1/(k+1)(k+2)/[1-1/(k+1
)(k+2)
=[1/(k+1)-1/(k+2)]/[1-1/(k+1)(k+2)]
得f[1/(k²+3k+1)]=f[1/(k+1)+f[-1/(k+2)]=f[1/(k+1)]-f[1/(k+2)]….
于是f[1/(k²+3k+1)
]求和=f(1/2)-f(1/(n+2))=-1-f(1/(n+2))
∴1+f(1/5)+f(1/11)+..+f(1/(n²+3n+1)+f(1/(n+2))=0
龙者轻吟为您解惑,凤者轻舞闻您追问.
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
∴│2xn/(1+xn²│≤1
又x1=1/2
∴
│2xn/(1+xn²│<1
f(x1)=f(1/2)=-1
而f(x(n+1)),f(x(n+1))=f(2xn/(1+xn²²)=f[(xn+xn)/(1+xnxn)=f(xn)+f(xn)=2f(xn)
∴f(x(n+1))/f(xn)=2
∴﹛f(xn)﹜是以-1为首项,以2为公比的等比数列,故f(n)=-2^(n-1)
(2)由题设,有f(0)+f(0)=f[(0+0)/(1+0)]=f(0),故f(0)=0
又x∈(-1,1),有f(x)+f(-x)=f[(x-x)/91-x²]]=f(0)=0
得f(-x)=-f(x),故知f(x)在﹙-1,1)上为奇函数.
由
1/(k²+3k+1)=1/[
(k+1)(k+2)-1]
=1/(k+1)(k+2)/[1-1/(k+1
)(k+2)
=[1/(k+1)-1/(k+2)]/[1-1/(k+1)(k+2)]
得f[1/(k²+3k+1)]=f[1/(k+1)+f[-1/(k+2)]=f[1/(k+1)]-f[1/(k+2)]….
于是f[1/(k²+3k+1)
]求和=f(1/2)-f(1/(n+2))=-1-f(1/(n+2))
∴1+f(1/5)+f(1/11)+..+f(1/(n²+3n+1)+f(1/(n+2))=0
龙者轻吟为您解惑,凤者轻舞闻您追问.
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
函数f(x)满足f(x)+f(y)=f(x+y/1+xy),对任意实数x,y∈(-1,1)都成立,将x=1/2(这个数任意,只要在大小于-1小于1),x=0替换
f(1/2)+f(0)=f(0+(1/2)/1+0)=f(0)
f(1/2)+f(0)=f(1/2)
f(0)=0
f(x)+f(-x)=f(x-x/1+x*(-x))=f(0)
f(x)=-f(-x)
所以得证f(x)为奇函数
f(1/2)+f(0)=f(0+(1/2)/1+0)=f(0)
f(1/2)+f(0)=f(1/2)
f(0)=0
f(x)+f(-x)=f(x-x/1+x*(-x))=f(0)
f(x)=-f(-x)
所以得证f(x)为奇函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你好
首先得到f(0)=0,且为奇函数【自己可以完成证明】
x(n+1)=[xn-(-xn))/[1-xn(-xn)]
令x=xn,y=-xn
则f(xn)-f(-xn)=f(x(n+1))=2f(xn)
--------------------------------------------------------------------------------------------------------------------
f(1/(n^2+3n+1))+f(1/(n+2))=f(((1/(n^2+3n+1))+(1/(n+2)))/(1+(1/(n^2+3n+1))(1/(n+2))))
=f(((n+1)(n+3))/((n+1)^2(n+3)))=f(1/(n+1)),
同理有f(1/((n-1)^2+3(n-1)+1))+f(1/(n+1))=f(1/n),
以此类推,得最后有f(1/5)+f(1/3)=f(1/2)=-1
所以原式=1+(-1)=0
首先得到f(0)=0,且为奇函数【自己可以完成证明】
x(n+1)=[xn-(-xn))/[1-xn(-xn)]
令x=xn,y=-xn
则f(xn)-f(-xn)=f(x(n+1))=2f(xn)
--------------------------------------------------------------------------------------------------------------------
f(1/(n^2+3n+1))+f(1/(n+2))=f(((1/(n^2+3n+1))+(1/(n+2)))/(1+(1/(n^2+3n+1))(1/(n+2))))
=f(((n+1)(n+3))/((n+1)^2(n+3)))=f(1/(n+1)),
同理有f(1/((n-1)^2+3(n-1)+1))+f(1/(n+1))=f(1/n),
以此类推,得最后有f(1/5)+f(1/3)=f(1/2)=-1
所以原式=1+(-1)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询