某点一阶可导能不能推出原函数在该点的邻域内连续?

 我来答
莉燕子06
2020-07-30 · TA获得超过1983个赞
知道大有可为答主
回答量:3737
采纳率:81%
帮助的人:125万
展开全部
我个人认为你有道理。
设f''(x0)=lim[f'(x)-f'(x0)]/(x-x0)存在,于是lim[f'(x)-f'(x0)]=0
上式仅仅说明f'(x)在x=0连续,当然可以说明f(x)在x=0的某个邻域连续。但f‘(x)在x=0的某个邻域连续的理由不充分。
这样一来:一阶导数存在,不能说明在该点邻域原函数连续

我认为在某点二阶导存在,那么一阶导在该点领域连续有问题。
暂且这样认为,我抽时间仔细想想。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式