若O是△ABC内一点,求证S△OBC·OA+S△OCA·OB+S△OAB·OC=0
1个回答
展开全部
这个问题不是很难,但是要讲清楚不是很容易.我跟你将一下吧:你先画一个三角形ABC,中间画一个点O连接OA OB OC.
然后记角BOC=a,角AOB=c,角AOC=b.
S三角形OBC=|OB|*|OC|*sina/2
S三角形OCA=|OA|*|OC|*sinb/2
S三角形OBA=|OB|*|OA|*sinc/2
记向量S三角形OBC·向量OA=向量OA*
S三角形OCA·向量OB=向量OB*
S三角形OBC·向量OC=向量OC*
好了,在图上,把OB沿OA移动到A点,将OC沿OC直线C点移动到O点,现在要证明OA*OB*OC*能组成一个三角形.
|OB*|/|OA*|=sinb/sina=sin(pi-b)/sin(pi-a)
在注意到OB*对的角就是pi-b,OA*对的角就是pi-a.
符合正玄定理,其他的两组也能类似得到,证明了OA*OB*OC*能组成一个三角形.
综上,S三角形OBC·向量OA+S三角形OCA·向量OB+S三角形OBC·向量OC=0向量
然后记角BOC=a,角AOB=c,角AOC=b.
S三角形OBC=|OB|*|OC|*sina/2
S三角形OCA=|OA|*|OC|*sinb/2
S三角形OBA=|OB|*|OA|*sinc/2
记向量S三角形OBC·向量OA=向量OA*
S三角形OCA·向量OB=向量OB*
S三角形OBC·向量OC=向量OC*
好了,在图上,把OB沿OA移动到A点,将OC沿OC直线C点移动到O点,现在要证明OA*OB*OC*能组成一个三角形.
|OB*|/|OA*|=sinb/sina=sin(pi-b)/sin(pi-a)
在注意到OB*对的角就是pi-b,OA*对的角就是pi-a.
符合正玄定理,其他的两组也能类似得到,证明了OA*OB*OC*能组成一个三角形.
综上,S三角形OBC·向量OA+S三角形OCA·向量OB+S三角形OBC·向量OC=0向量
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询