因为括号中{2/2m(2m+1)[m从1到n]}①的展开式是
[2/(2×3)]+[2/(4×5)]+……+{2/[2(n-1)(2n-1)]}+{2/[2n(2n+1)]}②
3/(2m+2)(2m+3)[m从1到n]的展开式是
{3/2(m+1)[2(m+1)+1]}[m从1到n]③的展开式
3/4×5+3/6×7+……+3/2n(2n+1)+3/(2n+2)(2n+3)④
②+④
2/(2×3)+{5/4×5+5/6×7+……+5/2n(2n+1)}+3/(2n+2)(2n+3)
=2/(2×3)+3/(2n+2)(2n+3)+(5/2m(2m+1)[m从2到n]
解法2:请观察一下①式和③式
{3/2(m+1)[2(m+1)+1]}[m从1到n]相当于
{3/2m(2m+1)[m从2到(n+1)]
所以{2/2m(2m+1)+3/(2m+2)(2m+3)}(m从1到n)
=2/2m(2m+1)(m从1到n)+3/(2m+2)(2m+3)(m从1到n)
=2/2m(2m+1)(m从1到n)+3/2(m+1)[2(m+1)+1](m从1到n)
=2/2m(2m+1)(m从1到n)+3/2m(2m+1)(m从2到n+1)
=2/2×3+2/2m(2m+1)(m从2到n)+3/2m(2m+1)(m从2到n)+3/(2n+2)(2n+3)
=2/2×3+3/(2n+2)(2n+3)+5/2m(2m+1)(m从2到n)