用换元法求不定积分 ∫ dx/x+根号(x^2+1)
展开全部
设x=tanα则√(x²+1)=1/cosα
∴原式=∫d(tanα)/(tanα+1/cosα)
=∫(1/cos²α)/(tanα+1/cosα)dα
=∫(cosα)dα/(sinαcos²α+cos²α)
=∫d(sinα)/【sinα(1-sin²α)+1-sin²α】
=-1/【2(sinα+1)】-1/4ln〡(sinα-1)/(sinα+1)〡+C
由于sinα=x/(√(x²+1)),所以
原式=-1/【2(x/√(x²+1))+2】-1/4ln〡(x/(√(x²+1))-1)/(x/(√(x²+1))+1)〡
+C
终于做完了!
∴原式=∫d(tanα)/(tanα+1/cosα)
=∫(1/cos²α)/(tanα+1/cosα)dα
=∫(cosα)dα/(sinαcos²α+cos²α)
=∫d(sinα)/【sinα(1-sin²α)+1-sin²α】
=-1/【2(sinα+1)】-1/4ln〡(sinα-1)/(sinα+1)〡+C
由于sinα=x/(√(x²+1)),所以
原式=-1/【2(x/√(x²+1))+2】-1/4ln〡(x/(√(x²+1))-1)/(x/(√(x²+1))+1)〡
+C
终于做完了!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询