设A为n阶实对称矩阵,证明:秩(A)=n的充分必要条件为存在一个n阶实矩阵B,使AB+BTA是正定矩阵
设A为n阶实对称矩阵,证明:秩(A)=n的充分必要条件为存在一个n阶实矩阵B,使AB+BTA是正定矩阵....
设A为n阶实对称矩阵,证明:秩(A)=n的充分必要条件为存在一个n阶实矩阵B,使AB+BTA是正定矩阵.
展开
展开全部
“必要性”(?)
利用反证法进行证明.
反设:r(A)<n,则|A|=0.
于是λ=0是A的特征值,
假设相应的特征向量为x,即:Ax=0(x≠0),
所以:xTAT=0.
从而:xT(AB+BTA)x=xTABx+xTBTAx=0,
与AB+BTA是正定矩阵矛盾,故假设不成立.
所以,秩(A)=n.
“充分性”(?)
因为 r(A)=n,
所以A的特征值λ1,λ2,…,λn全不为0.
取矩阵B=A,则:AB+BTA=AA+AA=2A2,
它的特征值为:2λ12,2λ22,…,2λn2全部为正,
所以AB+BTA是正定矩阵.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |