
均值不等式数学题?
1个回答
展开全部
1) 配方:x²+y²-2x-2y = (x-1)² + (y-1)² - 2
约束条件:xy = 2,根据最值条件,当且仅当x = y = √2时,上面取最小值。
2(√2 - 1)^2 - 2 = 2(3-2√2) - 2 = 4 - 4√2
2) 拉格朗日法:f(x, y) = x²+y²-2x-2y + λ(xy-2)
f'x = 2x-2+λy = 0
f'y = 2y-2+λx = 0
解得:(x-1)/y = (y-1)/x
又因为, xy = 2
x^2-x = y^2-y ==> x = y = √2。从而得同样的结果。
约束条件:xy = 2,根据最值条件,当且仅当x = y = √2时,上面取最小值。
2(√2 - 1)^2 - 2 = 2(3-2√2) - 2 = 4 - 4√2
2) 拉格朗日法:f(x, y) = x²+y²-2x-2y + λ(xy-2)
f'x = 2x-2+λy = 0
f'y = 2y-2+λx = 0
解得:(x-1)/y = (y-1)/x
又因为, xy = 2
x^2-x = y^2-y ==> x = y = √2。从而得同样的结果。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询