f(x)在[a,+∞)上连续,且limx→∞f(x)存在 证明其一致连续

 我来答
鲁树兵
2012-11-12 · TA获得超过4798个赞
知道大有可为答主
回答量:2814
采纳率:0%
帮助的人:558万
展开全部
设limf﹙x﹚=A ﹙x趋于无穷大﹚
任意ε 存在X>A 当x>X时 |f﹙x﹚-A|<ε/4 ∴对任意x₁、x₂∈﹙X,﹢∞﹚ 有|f﹙x₁﹚-f﹙x₂﹚|≤|f﹙x₁﹚-A|+|f﹙x₂﹚-A|<ε/2
由康托定理 f﹙x﹚在[a,X]一致连续 因而存在δ<X-a 使|x₁-x₂|<δ,x₁,x₂∈[a,X]时 |f﹙x₁﹚-f﹙x₂﹚|<ε/2
从而对任意x₁,x₂∈[a,﹢∞﹚只要|x₁-x₂|<δ 就有|f﹙x₁﹚-f﹙x₂﹚|<ε/2+ε/2=ε
∴其一致连续
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式