如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.

如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2... 如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.
(1)求EG的长;
(2)求证:CF=AB+AF.
展开
杨06164
2013-04-02
知道答主
回答量:7
采纳率:0%
帮助的人:1万
展开全部
(1)解:∵BD⊥CD,∠DCB=45°, ∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= DB2+CD2 =2 2 , ∵CE⊥BE,点G为BC的中点, ∴EG=1 2 BC= 2 . 答:EG的长是 2 . (2)证明:在线段CF上截取CH=BA,连接DH, ∵BD⊥CD,BE⊥CE, ∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°, ∵∠EFB=∠DFC, ∴∠EBF=∠DCF, ∵DB=CD,BA=CH, ∴△ABD≌△HCD, ∴AD=DH,∠ADB=∠HDC, ∵AD∥BC, ∴∠ADB=∠DBC=45°, ∴∠HDC=45°,∴∠HDB=∠BDC-∠HDC=45°, ∴∠ADB=∠HDB, ∵AD=HD,DF=DF, ∴△ADF≌△HDF, ∴AF=HF, ∴CF=CH+HF=AB+AF, ∴CF=AB+AF. (解法二)证明:延长BA与CD延长线交于M, ∵△BFE和△CFD中, ∠BEF=∠CDF=90°,∠BFE=∠CFD, ∴∠MBD=∠FCD, ∵△BCD中∠DCB=45°,BD⊥CD, ∴BD=CD, △BMD和△CFD中, ∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD, ∴△BMD≌△CFD, ∴CF=BM=AB+AM,DM=DF, ∵AD∥BC,∠ADF=∠DBC=45°∠BDM=90°, ∴∠ADM=∠ADF=45°, ∴△AFD≌△AMD, ∴AM=AF, ∴CF=BM=AB+AM=AB+AF,即CF=AB+AF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
葵卓007
2012-11-12
知道答主
回答量:9
采纳率:0%
帮助的人:6.3万
展开全部
因为过点C作CE⊥AB于E,点G为BC中点所以三角形BCE为直角三角形,EG=1/2BC=根号2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式