求函数极限时,什么情况可以运用等价无穷小,什么情况不可以用
展开全部
独立的乘积的因子若是无穷小,可以用等价的无穷小替换。例如lim(x→0) sinx*tanx/x^2,这里的sinx,tanx都可以替换,如果是lim(x→0) (sinx-tanx)/x^3,分子的sinx,tanx都不能替换,可以化成lim(x→0) tanx(cosx-1)/x^3后,替换sinx与1-cosx
追答
加减项中如果每一项都是无穷小,各自用等价无穷小替换以后得到的结果不是0,则是可以替换的。用泰勒公式求极限就是基于这种思想。
举一个例子让你明白:
求当x→0时,(tanx-sinx)/(x^3)的极限。
用洛必塔法则容易求得这个极限为1/2。
我们知道,当x→0时,tanx~x,sinx~x,若用它们代换,结果等于0,显然错了,这是因为x-x=0的缘故;
而当x→0时,tanx~x+(x^3)/3,sinx~x-(x^3)/6,它们也都是等价无穷小(实际上都是3阶麦克劳林公式),若用它们代换:tanx-sinx~(x^3)/2≠0,就立即可以得到正确的结果。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |