如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、AC.

如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、AC.(1)求证:四边形ABFC是平行四边形;(2... 如图,在梯形ABCD中,AD//BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、AC. (1)求证:四边形ABFC是平行四边形;(2)如果DE 2 =BE·CE,求证四边形ABFC是矩形. 展开
 我来答
山高自出门6837
推荐于2016-12-01 · 超过65用户采纳过TA的回答
知道答主
回答量:126
采纳率:0%
帮助的人:127万
展开全部
(1)证明见解析;(2)证明见解析.


试题分析:(1)连接BD,利用等腰梯形的性质得到AC=BD,再根据垂直平分线的性质得到DB=FB,从而得到AC=BF,然后证得AC∥BF,利用一组对边平行且相等判定平行四边形;
(2)利用题目提供的等积式和两直角相等可以证得两直角三角形相似,得到对应角相等,从而得到直角来证明有一个角是直角的平行四边形是矩形.
试题解析:(1)连接BD

∵梯形ABCD中,AD∥BC,AB=CD
∴AC=BD
∵DE⊥BC,EF=DE
∴BD=BF,CD=CF
∴AC=BF,AB=CF
∴四边形ABCF是平行四边形;
(2)∵DE 2 =BE?CE

∵∠DEB=∠DEC=90°,
∴△BDE∽△DEC,
∴∠CDE=∠DBE,
∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°,
∴四边形ABFC是矩形.
考点: 1.等腰梯形的性质;2.全等三角形的判定与性质;3.平行四边形的判定与性质;4.相似三角形的判定与性质.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式