如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一

如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.... 如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比5?12.①写出图中所有的黄金三角形,选一个说明理由;②求AD的长;③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由. 展开
 我来答
手机用户18607
2014-11-14 · TA获得超过260个赞
知道答主
回答量:121
采纳率:0%
帮助的人:112万
展开全部
(1)∵BD=DC=AC.
则∠B=∠DCB,∠CDA=∠A.
设∠B=x,则∠DCB=x,∠CDA=∠A=2x.
又∠BOC=108°,
∴∠B+∠A=108°.
∴x+2x=108,x=36°.
∴∠B=36°;

(2)①有三个:△BDC,△ADC,△BAC.
∵DB=DC,∠B=36°,
∴△DBC是黄金三角形,
(或∵CD=CA,∠ACD=180°-∠CDA-∠A=36°.
∴△CDA是黄金三角形.
或∵∠ACE=108°,
∴∠ACB=72°.又∠A=2x=72°,
∴∠A=∠ACB.
∴BA=BC.
∴△BAC是黄金三角形.
②△BAC是黄金三角形,
AC
BC
5
?1
2

∵BC=2,∴AC=
5
-1.
∵BA=BC=2,BD=AC=
5
-1,
∴AD=BA-BD=2-(
5
-1)=3-
5


③存在,有三个符合条件的点P1、P2、P3
ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2
ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点 P3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式