函数f(x)=√(3x^2-2),若数列an,a1=2,且an=f(a(n-1)),若bn=3^n/(an+an+1),求bn的Sn

tiantang_85
2012-11-13 · TA获得超过3260个赞
知道大有可为答主
回答量:1450
采纳率:100%
帮助的人:569万
展开全部
an=f(a(n-1))=√[3(an-1)²-2
两边平方,整理得:
an²-1=3(an-1²-1)
且a1²-1=3
所以{an²-1}是以3为首项,公比为3的等比数列
所以an²-1=3^n
an=√(3^n +1)
bn=3^n/(an+an+1)=3^n/{√(3^n +1)+√(3^[n+1) +1]} 利用平方差公式
=(3^n){√(3^n +1)-√(3^[n+1) +1]} /(-2 *3^n)
=-{√(3^n +1)-√(3^[n+1) +1]} /2
=-(an -an+1)/2
所以Sn=-(a1-an+1)/2
={√[3^(n+1) +1] }/2 -1
Lingkun
2012-11-14
知道答主
回答量:25
采纳率:0%
帮助的人:19.6万
展开全部
十年前会。。。
来自:求助得到的回答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式