二重积分和定积分计算题,要有分析过程。第8和第10题。如图所示。
3个回答
2015-03-04 · 知道合伙人教育行家
关注
展开全部
8. 很简单,有求变上限积分的求导公式
d/dx ∫(a→x) ƒ(t) dt = ƒ(x)
于是直接用公式就可以了
ƒ(x) = ∫(0→2x) ƒ(t/2) dt
ƒ'(x) = (2x)' • ƒ((2x)/2)
= 2ƒ(x)
通常,如果被积函数里面没有x的话,就可以直接用公式
如果有x的话,多数要用换元法,大致有两种形式
第一种是被积函数里和x有乘除关系,或无法抽出积分号外的,ƒ(xt)或ƒ(x/t)或ƒ(x² - t²)等
则d/dx ∫(0→x) ƒ(xt) dt,由于x在被积函数里又无法抽出积分号外,需要换元u = xt,du = x dt
于是等于d/dx ∫(0→x²) ƒ(u) • 1/x du = d/dx (1/x)∫(0→x²) ƒ(u) du,再用导数乘法则可以了
另一种虽然被积函数和x可能有乘除关系,但可以抽出到积分号外,例如(x - t)ƒ(t)等
则d/dx ∫(0→x) (x - t)ƒ(t) dt
= d/dx [∫(0→x) xƒ(t) dt - ∫(0→x) tƒ(t) dt]
= d/dx [x∫(0→x) ƒ(t) dt] - d/dx [∫(0→x) tƒ(t) dt]
如果用你那种换元法的话可未尝不可以
令u = t/2则du = 1/2 dt
t = 0,u = 0
t = 2x,u = 2x/2 = x
则d/dx ∫(0→2x) ƒ(t/2) dt
= d/dx ∫(0→x) ƒ(u) • 2 du
= 2 • d/dx ∫(0→x) ƒ(u) du
= 2ƒ(x)
10.
∫∫2dxdy=2∫∫dxdy= 2*1/2*1*1=1
希望能帮到你, 望采纳. 祝学习进步
d/dx ∫(a→x) ƒ(t) dt = ƒ(x)
于是直接用公式就可以了
ƒ(x) = ∫(0→2x) ƒ(t/2) dt
ƒ'(x) = (2x)' • ƒ((2x)/2)
= 2ƒ(x)
通常,如果被积函数里面没有x的话,就可以直接用公式
如果有x的话,多数要用换元法,大致有两种形式
第一种是被积函数里和x有乘除关系,或无法抽出积分号外的,ƒ(xt)或ƒ(x/t)或ƒ(x² - t²)等
则d/dx ∫(0→x) ƒ(xt) dt,由于x在被积函数里又无法抽出积分号外,需要换元u = xt,du = x dt
于是等于d/dx ∫(0→x²) ƒ(u) • 1/x du = d/dx (1/x)∫(0→x²) ƒ(u) du,再用导数乘法则可以了
另一种虽然被积函数和x可能有乘除关系,但可以抽出到积分号外,例如(x - t)ƒ(t)等
则d/dx ∫(0→x) (x - t)ƒ(t) dt
= d/dx [∫(0→x) xƒ(t) dt - ∫(0→x) tƒ(t) dt]
= d/dx [x∫(0→x) ƒ(t) dt] - d/dx [∫(0→x) tƒ(t) dt]
如果用你那种换元法的话可未尝不可以
令u = t/2则du = 1/2 dt
t = 0,u = 0
t = 2x,u = 2x/2 = x
则d/dx ∫(0→2x) ƒ(t/2) dt
= d/dx ∫(0→x) ƒ(u) • 2 du
= 2 • d/dx ∫(0→x) ƒ(u) du
= 2ƒ(x)
10.
∫∫2dxdy=2∫∫dxdy= 2*1/2*1*1=1
希望能帮到你, 望采纳. 祝学习进步
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-03-04
展开全部
祝你补考能过,阿弥陀佛
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询