各位大神 ∫xarctan2xdx怎么求 详细过程 很急 在线等!!! 答案是(x^2/2)arctan2x+1/8arctan2x-1/4x+c?
展开全部
∫xarctan(2x) dx
=(1/2)∫arctan(2x) dx^2
=(1/2)x^2.arctan(2x) -(1/2)∫x^2 darctan(2x)
=(1/2)x^2.arctan(2x) -(1/2)∫x^2 .{2/[1+(2x)^2] } dx
=(1/2)x^2.arctan(2x) -∫x^2 /(1+4x^2) dx
=(1/2)x^2.arctan(2x) -∫ [(1/4)(1+4x^2) -(1/4) ]/(1+4x^2) dx
=(1/2)x^2.arctan(2x) -(1/4)∫ [1 - 1/(1+4x^2)] dx
=(1/2)x^2.arctan(2x) -(1/4)x +(1/4)∫ dx/(1+4x^2)
=(1/2)x^2.arctan(2x) -(1/4)x +(1/8)∫ d(2x)/[1+(2x)^2]
=(1/2)x^2.arctan(2x) -(1/4)x +(1/8)arctan(2x) +C
=(1/2)∫arctan(2x) dx^2
=(1/2)x^2.arctan(2x) -(1/2)∫x^2 darctan(2x)
=(1/2)x^2.arctan(2x) -(1/2)∫x^2 .{2/[1+(2x)^2] } dx
=(1/2)x^2.arctan(2x) -∫x^2 /(1+4x^2) dx
=(1/2)x^2.arctan(2x) -∫ [(1/4)(1+4x^2) -(1/4) ]/(1+4x^2) dx
=(1/2)x^2.arctan(2x) -(1/4)∫ [1 - 1/(1+4x^2)] dx
=(1/2)x^2.arctan(2x) -(1/4)x +(1/4)∫ dx/(1+4x^2)
=(1/2)x^2.arctan(2x) -(1/4)x +(1/8)∫ d(2x)/[1+(2x)^2]
=(1/2)x^2.arctan(2x) -(1/4)x +(1/8)arctan(2x) +C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫xarctan2xdx = (1/2)∫arctan2xd(x^2) (分部积分)
= (1/2)x^2arctanx - ∫[x^2/(1+4x^2)]dx
= (1/2)x^2arctanx - (1/4)∫[(4x^2+1-1)/(1+4x^2)]dx
= (1/2)x^2arctanx - (1/4)∫[1-1/(1+4x^2)]dx
= (1/2)x^2arctanx - x/4 + (1/8)∫[1/(1+4x^2)]d(2x)
= (1/2)x^2arctanx - x/4 + (1/8)arctan(2x) + C
= (1/2)x^2arctanx - ∫[x^2/(1+4x^2)]dx
= (1/2)x^2arctanx - (1/4)∫[(4x^2+1-1)/(1+4x^2)]dx
= (1/2)x^2arctanx - (1/4)∫[1-1/(1+4x^2)]dx
= (1/2)x^2arctanx - x/4 + (1/8)∫[1/(1+4x^2)]d(2x)
= (1/2)x^2arctanx - x/4 + (1/8)arctan(2x) + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-11-25
展开全部
教育领域创作者
书本上求反正切函数arctanX的导数用的是纯代数方法的推导,严禁简单,但不显得那么直观,如下图所示
今天我们就用一种比较直观的几何方法求反正切函数的导数
同样做一个四分之一的单位圆,但这里为了更加直观仅用直角三角形来演示其原理
首先旋转一个微元的角度θ,这时形成一个新的微元三角形,且对应的边是微小量h
首先用h作为底来表示这个新三角形的面积:S= 1/2*h*1
如果用√(x+h)^2+1作为底来表示三角形的面积就等于:S=1/2√(x+h)^2+1*√(x^2+1)*sinθ
所以我们得到h=√(x+h)^2+1*√(x^2+1)*sinθ
我们带入d(arctanX)/dx经过简单的化简就得到反正切函数的的导数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询