已知二次函数y=-x2+mx+n,当x=3时,有最大值4

1,求m和n的值!2,设这个二次函数的图像与x轴交点是A和B,求A,B两点的坐标!4,有一圆经过A、B,且与y轴的正半轴相切于点C,求点C的坐标前三问都做了,关键是最后一... 1,求m和n的值!
2,设这个二次函数的图像与x轴交点是A和B,求A,B两点的坐标!
4,有一圆经过A、B,且与y轴的正半轴相切于点C,求点C的坐标
前三问都做了,关键是最后一问,谢谢
展开
塞外野瘦
推荐于2016-12-02 · 聊聊人生八卦,谈谈世间百态
塞外野瘦
采纳数:10129 获赞数:122952

向TA提问 私信TA
展开全部
1、可得二次函数解析式为:
y=-(x-3)²+4
=-x²+6x-5
所以可得:m=6,n=-5
2、当y=0时有:
-x²+6x-5=0
(x-5)(x-1)=0
解得:x=1或x=5
所以可得A、B两点的坐标为:(1,0),(5,0)
4、设点C的坐标为(0,b) 且b>0 则有:
则圆心O坐标为(r,b),因圆与y轴相切所以r为圆半径。

又圆O经过A,B两点,则过O做直线垂直于A,B,垂线必交于AB中点,即(3,0)

所以可得:r=3 因此可得圆的方程为:
(x-3)²+(y-b)²=3²
过(1,0)代入方程得:
4+b²=9
解得:b=√5 或 b=-√5(舍去)
所以点C的坐标为:(0,√5)
来自:求助得到的回答
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
百度网友966cf01
2012-11-14
知道答主
回答量:29
采纳率:0%
帮助的人:15.1万
展开全部
前三问都做了,那么可以算出m=6,n=-5。
A坐标为(1,0),B坐标为(5,0)。
最后一问:
令C坐标为(0,b),则圆心O坐标为(r,b),r为圆半径。(这个能想通吗?)
又圆O经过A,B两点,则过O做直线垂直于A,B,垂线必交于AB中点,即(3,0)。
所以,半径r=3。
令C坐标为(0,y)
则r*2=y*2+2*2.(以圆心O,A,及AB中点够成的直角三角形的勾股定理得来)
所以y=根号5(因交于y正半轴,负值舍去)
即C点坐标为(0,根号5)
有错请指正
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
梦幻爱情水晶
2013-01-12
知道答主
回答量:32
采纳率:0%
帮助的人:7万
展开全部
1、可得二次函数解析式为:
y=-(x-3)²+4
=-x²+6x-5
所以可得:m=6,n=-5
2、当y=0时有:
-x²+6x-5=0
(x-5)(x-1)=0
解得:x=1或x=5
所以可得A、B两点的坐标为:(1,0),(5,0)
4、设点C的坐标为(0,b) 且b>0 则有:
则圆心O坐标为(r,b),因圆与y轴相切所以r为圆半径。

又圆O经过A,B两点,则过O做直线垂直于A,B,垂线必交于AB中点,即(3,0)

所以可得:r=3 因此可得圆的方程为:
(x-3)²+(y-b)²=3²
过(1,0)代入方程得:
4+b²=9
解得:b=√5 或 b=-√5(舍去)
所以点C的坐标为:(0,√5)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
li1162750394
2012-11-14
知道答主
回答量:13
采纳率:0%
帮助的人:1.9万
展开全部
将原方程转换为y=-(x-m/2)^2+m^2/4+n,
由题可得当x=m/2=3时,y取得最大值m^2/4+n=4,可求得m=6,n=-5
求与x轴交点即是令y=0,-x^2+6x-5=0,即x^2-6x+5=0
(x-1)(x-5)=0,得x=1或5,所以坐标为(1,0)和(5,0)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小百合1972
高粉答主

2012-11-14 · 每个回答都超有意思的
知道大有可为答主
回答量:4.2万
采纳率:78%
帮助的人:8765万
展开全部
1、y=-x^2+mx+n=-(x+m/2)^2+n+m^2/4
m/2=3,n+m^2/4=4
m=6,n=-5
2、y=-x^2+6x-5
-x^2+6x-5=0
x=1,x=5
A(1,0),B(5,0)
3、∵圆O与y轴的正半轴相切,且二次函数的对称轴为x=3
∴圆O的半径为3
因此,令圆O的方程为:(x-3)^2+(y-b)^2=3^2
代入A(1,0),得:
(1-3)^2+(0+b)^2=3^2
b=±√5
∴C(0,-√5),或C(0,√5)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式