5个回答
展开全部
q∈(0,π) q+π/3∈(π/3,4π/3)
0<sin(q+π/3)=1/3<1/2 所以 5π/6<q+π/3<π
cos(q+π/3)=-(2√2)/3
cos(q+π/12)=cos(q+π/3-π/4)=cos(q+π/3)cos(π/4)+sin(q+π/3)sin(π/4)
=-(2√2)/3 (√2/2)+(1/3)(√2/2)=-2/3+√2/6=(√2-4)/6
0<sin(q+π/3)=1/3<1/2 所以 5π/6<q+π/3<π
cos(q+π/3)=-(2√2)/3
cos(q+π/12)=cos(q+π/3-π/4)=cos(q+π/3)cos(π/4)+sin(q+π/3)sin(π/4)
=-(2√2)/3 (√2/2)+(1/3)(√2/2)=-2/3+√2/6=(√2-4)/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:∵sin(q+π/3)=1/3,q∈(0,π)
∴cos(q+π/12)
=cos(q+4π/12-3π/12)
=cos(q+π/3)cos(π/4)+sin(q+π/3)sin(π/4)
∵sin(q+π/3)=1/3<1
∴2/π<q+π/3<π
∴cos(q+π/3)=-(2√2)/3
∴cos(q+π/12)
=cos(q+π/3)cos(π/4)+sin(q+π/3)sin(π/4)
=-(2√2)/3×√2/2+1/3×√2/2
=-2/3+√2/6
=(√2-4)/6
∴cos(q+π/12)
=cos(q+4π/12-3π/12)
=cos(q+π/3)cos(π/4)+sin(q+π/3)sin(π/4)
∵sin(q+π/3)=1/3<1
∴2/π<q+π/3<π
∴cos(q+π/3)=-(2√2)/3
∴cos(q+π/12)
=cos(q+π/3)cos(π/4)+sin(q+π/3)sin(π/4)
=-(2√2)/3×√2/2+1/3×√2/2
=-2/3+√2/6
=(√2-4)/6
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
q+π/3=arcsin(1/3) q=arcsin(1/3)-π/3<0 不满足q∈(0,π)
所以q+π/3=π-arcsin(1/3) q=π-arcsin(1/3)-π/3
cos(π-arcsin(1/3)-π/3+π/12)
= -cos(arcsin(1/3)+π/3-π/12)
= -cos(arcsin(1/3)+π/4)
= -[cos(arcsin(1/3)cos(π/4)-sin(arcsin1/3)sinπ/4]
= -(4-根号2)/6
所以q+π/3=π-arcsin(1/3) q=π-arcsin(1/3)-π/3
cos(π-arcsin(1/3)-π/3+π/12)
= -cos(arcsin(1/3)+π/3-π/12)
= -cos(arcsin(1/3)+π/4)
= -[cos(arcsin(1/3)cos(π/4)-sin(arcsin1/3)sinπ/4]
= -(4-根号2)/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
cos(a-b)=cosa cosb+sina sinb
sin(q+π/3)=1/3,q∈(0,π)得cos(q+π/3)=(-?)
cos(q+π/12)=cos(q+π/3-π/4)=cos(q+π/3)cosπ/4+sin(q+π/3)sinπ/4=?
自己算哈啊,具体值我都忘了···
sin(q+π/3)=1/3,q∈(0,π)得cos(q+π/3)=(-?)
cos(q+π/12)=cos(q+π/3-π/4)=cos(q+π/3)cosπ/4+sin(q+π/3)sinπ/4=?
自己算哈啊,具体值我都忘了···
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
上半年平均数是(50+51+48+50+52+49)/6=50
设增长率X
50X2=72
X=1.2
设增长率X
50X2=72
X=1.2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询