若abc分别是三角形的三边长,且满足1/a+1/b+1/c=1/(a+b-c)则一定有——

265380s
2012-11-16 · TA获得超过4907个赞
知道小有建树答主
回答量:1220
采纳率:80%
帮助的人:264万
展开全部
原题应为1/a+1/b-1/c=1/(a+b-c)
解:等腰三角形

1/a+1/b-1/c=1/(a+b-c)
等式两边都乘以c
得c/a+c/b-1=c/(a+b-c)
右边分子分母都除以c
即c/a+c/b-1=1/(a/c+b/c-1)
设c/a=x c/b=y 则原式化为
X+y-1=1/(1/x+1/y-1)
即x+y-1=xy/(x+y-xy)
化简后 因式分解即 (x-1)*(y-1)*(x+y)=0
x+y>0 所以x-1=0 或y-1=0 所以 b=a或 b=c
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式